Quoting Steven Strogatz, “Since Newton,

mankind has come to realize that the laws of physics are always expressed in the language

of differential equations.” Of course, this language is spoken well beyond the boundaries

of physics as well, and being able to speak it and read it adds a new color to how you

view the world around you. In the next few videos, I want to give a sort

of tour of this topic. To aim is to give a big picture view of what this part of math

is all about, while at the same time being happy to dig into the details of specific

examples as they come along. I’ll be assuming you know the basics of

calculus, like what derivatives and integrals are, and in later videos we’ll need some

basic linear algebra, but not much beyond that. Differential equations arise whenever it’s

easier to describe change than absolute amounts. It’s easier to say why population sizes

grow or shrink than it is to describe why the have the particular values they do at

some point in time; It may be easier to describe why your love for someone is changing than

why it happens to be where it is now. In physics, more specifically Newtonian mechanics, motion

is often described in terms of force. Force determines acceleration, which is a statement

about change. These equations come in two flavors; Ordinary

differential equations, or ODEs, involving functions with a single input, often thought

of as time, and Partial differential equations, or PDEs, dealing with functions that have

multiple inputs. Partial derivatives are something we’ll look at more closely in the next video;

you often think of them involving a whole continuum of values changing with time, like

the temperature of every point in a solid body, or the velocity of a fluid at every

point in space. Ordinary differential equations, our focus for now, involve only a finite collection

of values changing with time. It doesn’t have to be time, per se, your

one independent variable could be something else, but things changing with time are the

prototypical and most common examples of differential equations.

Physics (simple) Physics offers a nice playground for us here,

with simple examples to start with, and no shortage of intricacy and nuance as we delve

deeper. As a nice warmup, consider the trajectory

of something you throw in the air. The force of gravity near the surface of the earth causes

things to accelerate downward at 9.8 m/s per second. Now unpack what that really means:

If you look at some object free from other forces, and record its velocity every second,

these vectors will accrue an additional downward component of 9.8 m/s every second. We call

this constant 9.8 “g”. This gives an example of a differential equation,

albeit a relatively simple one. Focus on the y-coordinate, as a function of time. It’s

derivative gives the vertical component of velocity, whose derivative in turn gives the

vertical component of acceleration. For compactness, let’s write this first derivative as y-dot,

and the second derivative as y-double-dot. Our equation is simply y-double-dot=-g.

This is one where you can solve by integrating, which is essentially working backwards. First,

what is velocity, what function has -g as a derivative? Well, -g*t. Or rather, -g*t

+ (the initial velocity). Notice that you have this degree of freedom which is determined

by an initial condition. Now what function has this as a derivative? -(½)g*t^2 + v_0

* t. Or, rather, add in a constant based on whatever the initial position is. Things get more interesting when the forces

acting on a body depend on where that body is. For example, studying the motion of planets,

stars and moons, gravity can no longer be considered a constant. Given two bodies, the

pull on one is in the direction of the other, with a strength inversely proportional to

the square of the distance between them. As always, the rate of change of position

is velocity, but now the rate of change of velocity is some function of position. The

dance between these mutually-interacting variables is mirrored in the dance between the mutually-interacting

bodies which they describe. So often in differential equations, the puzzles

you face involve finding a function whose derivative and/or higher order derivatives

are defined in terms of itself. In physics, it’s most common to work with

second order differential equations, which means the highest derivative you find in the

expression here is a second derivative. Higher order differential equations would be ones

with third derivatives, fourth derivatives and so on; puzzles with more intricate clues. The sensation here is one of solving an infinite

continuous jigsaw puzzle. In a sense you have to find infinitely many numbers, one for each

point in time, constrained by a very specific way that these values intertwine with their

own rate of change, and the rate of change of that rate of change. I want you to take some time digging in to

a deceptively simple example: A pendulum. How does this angle theta that it makes with

the vertical change as a function of time. This is often given as an example in introductory

physics classes of harmonic motion, meaning it oscillates like a sine wave. More specifically,

one with a period of 2pi * L/g, where L is the length of the pendulum, and g is gravity. However, these formulas are actually lies.

Or, rather, approximations which only work in the realm of small angles. If you measured

an actual pendulum, you’d find that when you pull it out farther, the period is longer

than what that high-school physics formulas would suggest. And when you pull it really

far out, the value of theta vs. time doesn’t even look like a sine wave anymore. First thing’s first, let’s set up the

differential equation. We’ll measure its position as a distance x along this arc. If

the angle theta we care about is measured in radians, we can write x and L*theta, where

L is the length of the pendulum. As usual, gravity pulls down with acceleration

g, but because the pendulum constrains the motion of this mass, we have to look at the

component of this acceleration in the direction of motion. A little geometry exercise for

you is to show that this little angle here is the same as our theta. So the component

of gravity in the direction of motion, opposite this angle, will be -g*sin(theta). Here we’re considering theta to be positive

when the pendulum is swung to the right, and negative when it’s swung to the left, and

this negative sign in the acceleration indicates that it’s always pointed in the opposite

direction from displacement. So the second derivative of x, the acceleration, is -g*sin(theta).

Since x is L*theta, that means the second derivative of theta is -(g/L) * sin(theta).

To be somewhat more realistic, let’s add in a term to account for air resistance, which

perhaps we model as being proportional to the velocity. We write this as -mu * theta-dot,

where -mu is some constant determining how quickly the pendulum loses energy. This is a particularly juicy differential

equation. Not easy to solve, but not so hard that we can’t reasonably get some meaningful

understanding of it. At first you might think that this sine function

relates to the sine wave pattern for the pendulum. Ironically, though, what you’ll eventually

find is that the opposite is true. The presence of the sine in this equation is precisely

why the real pendulum doesn’t oscillate with the sine wave pattern. If that sounds odd, consider the fact that

here, the sine function takes theta as an input, but the approximate solution has the

value theta itself oscillating as a sine wave. Clearly something fishy is afoot. One thing I like about this example is that

even though it’s comparatively simple, it exposes an important truth about differential

equations that you need to be grapple with: They’re really freaking hard to solve. In this case, if we remove the damping term,

we can just barely write down an analytic solution, but it’s hilariously complicated,

involving all these functions you’re probably never heard of written in terms of integrals

and weird inverse integral problems. Presumably, the reason for finding a solution

is to then be able to make computations, and to build an understanding for whatever dynamics

your studying. In a case like this, those questions have just been punted off to figuring

out how to compute and understand these new functions. And more often, like if we add back this dampening

term, there is not a known way to write down an exact solution analytically. Well, for

any hard problem you could just define a new function to be the answer to that problem.

Heck, even name it after yourself if you want. But again, that’s pointless unless it leads

you to being able to compute and understand the answer. So instead, in studying differential equations,

we often do a sort of short-circuit and skip the actual solution part, and go straight

to building understanding and making computations from the equations alone. Let me walk through

what that might look like with the Pendulum. Phase space

What do you hold in your head, or what visualization could you get some software to pull up for

you, to understand the many possible ways a pendulum governed by these laws might evolve

depending on its starting conditions? You might be tempted to try imagining the

graph of theta(t), and somehow interpreting how its position, slope, and curvature all

inter-relate. However, what will turn out to be both easier and more general is to start

by visualizing all possible states of the system in a 2d plane. The state of the pendulum can be fully described

by two numbers, the angle, and the angular velocity. You can freely change these two

values without necessarily changing the other, but the acceleration is purely a function

of these two values. So each point of this 2d plane fully describes the pendulum at a

given moment. You might think of these as all possible initial conditions of the pendulum.

If you know this initial angle and angular velocity, that’s enough to predict how the

system will evolve as time moves forward. If you haven’t worked with them, these sorts

of diagrams can take a little getting used to. What you’re looking at now, this inward

spiral, is a fairly typical trajectory for our pendulum, so take a moment to think carefully

about what’s being represented. Notice how at the start, as theta decreases, theta-dot

gets more negative, which makes sense because the pendulum moves faster in the leftward

direction as it approaches the bottom. Keep in mind, even though the velocity vector on

this pendulum is pointed to the left, the value of that velocity is being represented

by the vertical component of our space. It’s important to remind yourself that this state

space is abstract, and distinct from the physical space where the pendulum lives and moves. Since we’re modeling it as losing some energy

to air resistance, this trajectory spirals inward, meaning the peak velocity and displacement

each go down by a bit with each swing. Our point is, in a sense, attracted to the origin

where theta and theta-dot both equal 0. With this space, we can visualize a differential

equation as a vector field. Here, let me show you what I mean. The pendulum state is this vector, [theta,

theta-dot]. Maybe you think of it as an arrow, maybe as a point; what matters is that it

has two coordinates, each a function of time. Taking the derivative of that vector gives

you its rate of change; the direction and speed that it will tend to move in this diagram.

That derivative is a new vector, [theta-dot, theta-double-dot], which we visualize as being

attached to the relevant point in this space. Take a moment to interpret what this is saying. The first component for this rate-of-change

vector is theta-dot, so the higher up we are on the digram, the more the point tends to

move to the right, and the lower we are, the more it tends to move to the left. The vertical

component is theta-double-dot, which our differential equation lets us rewrite entirely in terms

of theta and theta-dot. In other words, the first derivative of our state vector is some

function of that vector itself. Doing the same at all points of this space

will show how the state tends to change from any position, artificially scaling down the

vectors when we draw them to prevent clutter, but using color to loosely indicate magnitude. Notice that we’ve effectively broken up

a single second order equation into a system of two first order equations. You might even

give theta-dot a different name to emphasize that we’re thinking of two separate values,

intertwined via this mutual effect they have on one and other’s rate of change. This

is a common trick in the study of differential equations, instead of thinking about higher

order changes of a single value, we often prefer to think of the first derivative of

vector values. In this form, we have a nice visual way to

think about what solving our equation means: As our system evolves from some initial state,

our point in this space will move along some trajectory in such a way that at every moment,

the velocity of that point matches the vector from this vector field. Keep in mind, this

velocity is not the same thing as the physical velocity of our pendulum. It’s a more abstract

rate of change encoding the changes in both theta and theta-dot. You might find it fun to pause for a moment

and think through what exactly some of these trajectory lines say about possible ways the

pendulum evolves for different starting conditions. For example, in regions where theta-dot is

quite high, the vectors guide the point to travel to the right quite a ways before settling

down into an inward spiral. This corresponds to a pendulum with a high initial velocity,

fully rotating around several times before settling down into a decaying back and forth. Having a little more fun, when I tweak this

air resistance term mu, say increasing it, you can immediately see how this will result

in trajectories that spiral inward faster, which is to say the pendulum slows down faster.

Imagine you saw the equations out of context, not knowing they described a pendulum; it’s

not obvious just-looking at them that increasing the value of mu means the system tends towards

some attracting state faster, so getting some software to draw these vector fields for you

can be a great way to gain an intuition for how they behave. What’s wonderful is that any system of ordinary

differential equations can be described by a vector field like this, so it’s a very

general way to get a feel for them. Usually, though, they have many more dimensions.

For example, consider the famous three-body problem, which is to predict how three masses

in 3d space will evolve if they act on each other with gravity, and you know their initial

positions and velocities. Each mass has three coordinates describing

its position and three more describing its momentum, so the system has 18 degrees of

freedom, and hence an 18-dimensional space of possible states. It’s a bizarre thought,

isn’t it? A single point meandering through and 18-dimensional space we cannot visualize,

obediently taking steps through time based on whatever vector it happens to be sitting

on from moment to moment, completely encoding the positions and momenta of 3 masses in ordinary,

physical, 3d space. (In practice, by the way, you can reduce this

number of dimension by taking advantage of the symmetries in your setup, but the point

of more degrees of freedom resulting in a higher-dimensional state space remains the

same). In math, we often call a space like this a

“phase space”. You’ll hear me use the term broadly for spaces encoding all kinds

of states for changing systems, but you should know that in the context of physics, especially

Hamiltonian mechanics, the term is often reserved for a special case. Namely, a space whose

axes represent position and momentum. So a physicist would agree that the 18-dimension

space describing the 3-body problem is a phase space, but they might ask that we make a couple

of modifications to our pendulum set up for it to properly deserve the term. For those

of you who watched the block collision videos, the planes we worked with there would happily

be called phase spaces by math folk, though a physicist might prefer other terminology.

Just know that the specific meaning may depend on your context. It may seem like a simple idea, depending

on how well indoctrinated you are to modern ways of thinking about math, but it’s worth

keeping in mind that it took humanity quite a while to really embrace thinking of dynamics

spatially like this, especially when the dimensions get very large. In his book Chaos, James Gleick

describes phase space as “one of the most powerful inventions of modern science.” One reason it’s powerful is that you can

ask questions not just about a single initial state, but a whole spectrum of initial states.

The collection of all possible trajectories is reminiscent of a moving fluid, so we call

it phase flow. To take one example of why phase flow is a

fruitful formulation, the origin of our space corresponds to the pendulum standing still;

and so does this point over here, representing when the pendulum is balanced upright. These

are called fixed points of the system, and one natural question to ask is whether they

are stable. That is, will tiny nudges to the system result in a state that tends back towards

the stable point or away from it. Physical intuition for the pendulum makes the answer

here obvious, but how would you think about stability just by looking at the equations,

say if they arose from some completely different and less intuitive context? We’ll go over how to compute the answer

to a question like this in following videos, and the intuition for the relevant computations

are guided heavily by the thought of looking at a small region in this space around the

fixed point and asking about whether the flow contracts or expands its points. Speaking of attraction and stability, let’s

take a brief sidestep to talk about love. The Strogatz quote I referenced earlier comes

from a whimsical column in the New York Times on mathematical models of love, an example

well worth pilfering to illustrate that we’re not just talking about physics. Imagine you’ve been flirting with someone,

but there’s been some frustrating inconsistency to how mutual the affections seem. And perhaps

during a moment when you turn your attention towards physics to keep your mind off this

romantic turmoil, mulling over your broken up pendulum equations, you suddenly understand

the on-again-off-again dynamics of your flirtation. You’ve noticed that your own affections

tend to increase when your companion seems interested in you, but decrease when they

seem colder. That is, the rate of change for your love is proportional to their feelings

for you. But this sweetheart of yours is precisely

the opposite: Strangely attracted to you when you seem uninterested, but turned off once

you seem too keen. The phase space for these equations looks

very similar to the center part of your pendulum diagram. The two of you will go back and forth

between affection and repulsion in an endless cycle. A metaphor of pendulum swings in your

feelings would not just be apt, but mathematically verified. In fact, if your partner’s feelings

were further slowed when they feel themselves too in love, let’s say out of a fear of

being made vulnerable, we’d have a term matching the friction of your pendulum, and

you two would be destined to an inward spiral towards mutual ambivalence. I hear wedding

bells already. The point is that two very different-seeming

laws of dynamics, one from physics initially involving a single variable, and another from…er…chemistry

with two variables, actually have a very similar structure, easier to recognize when looking

at their phase spaces. Most notably, even though the equations are different, for example

there’s no sine in your companion’s equation, the phase space exposes an underlying similarity

nevertheless. In other words, you’re not just studying

a pendulum right now, the tactics you develop to study one case have a tendency to transfer

to many others. Okay, so phase diagrams are a nice way to

build understanding, but what about actually computing the answer to our equation? Well,

one way to do this is to essentially simulate what the world will do, but using finite time

steps instead of the infinitesimals and limits defining calculus. The basic idea is that if you’re at some

point on this phase diagram, take a step based on whatever vector your sitting on for some

small time step, delta-t. Specifically, take a step of delta-T times that vector. Remember,

in drawing this vector field, the magnitude of each vector has been artificially scaled

down to prevent clutter. Do this repeatedly, and your final location will be an approximation

of theta(t), where t is the sum of all your time steps. If you think about what’s being shown right

now, and what that would imply for the pendulum’s movement, you’d probably agree it’s grossly

inaccurate. But that’s just because the timestep delta-t of 0.5 is way too big. If

we turn it down, say to 0.01, you can get a much more accurate approximation, it just

takes many more repeated steps is all. In this case, computing theta(10) requires a

thousand little steps. Luckily, we live in a world with computers, so repeating a simple

task 1,000 times is as simple as articulating that task with a programming language. In fact, let’s write a little python program

that computes theta(t) for us. It will make use of the differential equation, which returns

the second derivative of theta as a function of theta and theta-dot. You start by defining

two variables, theta and theta-dot, in terms of some initial values. In this case I’ll

choose pi / 3, which is 60-degrees, and 0 for the angular velocity. Next, write a loop which corresponds to many

little time steps between 0 and 10, each of size delta-t, which I’m setting to be 0.01

here. In each step of the loop, increase theta by theta-dot times delta-t, and increase theta-dot

by theta-double-dot times delta-t, where theta-double-dot can be computed based on the differential

equation. After all these little steps, simple return the value of theta. This is called solving the differential equation

numerically. Numerical methods can get way more sophisticated and intricate to better

balance the tradeoff between accuracy and efficiency, but this loop gives the basic

idea. So even though it sucks that we can’t always

find exact solutions, there are still meaningful ways to study differential equations in the

face of this inability. In the following videos, we will look at several

methods for finding exact solutions when it’s possible. But one theme I’d like to focus

is on is how these exact solutions can also help us study the more general unsolvable

cases. But it gets worse. Just as there is a limit

to how far exact analytic solutions can get us, one of the great fields to have emerged

in the last century, chaos theory, has exposed that there are further limits on how well

we can use these systems for prediction, with or without exact solutions. Specifically,

we know that for some systems, small variations to the initial conditions, say the kind due

to necessarily imperfect measurements, result in wildly different trajectories. We’ve

even built some good understanding for why this happens. The three body problem, for

example, is known to have seeds of chaos within it. So looking back at that quote from earlier,

it seems almost cruel of the universe to fill its language with riddles that we either can’t

solve, or where we know that any solution would be useless for long-term prediction

anyway. It is cruel, but then again, that should be reassuring. It gives some hope that

the complexity we see in the world can be studied somewhere in the math, and that it’s

not hidden away in some mismatch between model and reality.

Some notes on the intended use of this series. I was deliberate in using the phrase "tour of differential equations", as opposed to "introduction to" or "essence of". I think of the relationship between watching this series and taking a course as being analogous to the relationship between touring a city vs. living in it. You'll certainly see a lot less with the tour since you're spending less time overall, but the goal will be to walk around some of the most noteworthy monuments and town centers with helpful context given to you by a guide. And just as someone who lives in a city may very well have never gone to visit some of the historical sites of their town, despite living there for years, many differential equations students may not always get the chance to zoom out and appreciate the central cornerstones of the subject amidst all the computations they are learning.

I hope you enjoy the tour, but at the same time know that it is, by design, very different from taking courses on the subject.

What. I googled 'boobies'

That's it Sir, the things for which I was just wandering around , such an incredible visualisation and deep insight the concepts are just making me fall in love with all the topics you thought . Thanks a lot …..

more "Mathematics is Unstoppable" // AIU

with the time-step example given, is there a way to figure out which side you are wrong on? I noticed that the arrows tended to estimate too far to the outward side, at least in the initial spiral: could you find some way to estimate and account for the error this induces?

What I got from this video:

– Phase diagrams are amazing

– I am headed to mutual ambivalence.

21:00 Grant get out of my head! That’s very creepy!

You are the smartest guy in the world, can i marry you? LOL

Thanks, got a girlfriend thanks to you

Why Youtube keep baiting me with german titles and english content..

Just noticed this, but on the vector field you can see a tao instead of a 2pi! #taoisbetterthanpi

This video is just plain mesmerizing… Congratulations!

Phenomenal visualization ❤️

i have a request. Could you make a series on phython language for graphing and ploting.

Great video, the ultimate explanation of the use of differential equations, couldn't be better.

21:39 yep. there's great wisdom in that set of differential equations.

kkkkkedm/w

The explanation is very good thank you

My biggest difficulty with differential equations is the lack of formal representation in writing that you mentioned.

Traduccion a español

Unfortunately, I failed to understand the complete video. Your series are just awesome but this video is a bit higher level than my current understanding, I thought!

But really Thanks, for your efforts!

All of this is understandable to me, and almost even intuitive….except the freaking formulas. As soon as we move from visualization to numerical representation my brain just shuts down.

Certainly one of the best YT-Channels out there! Creative, original, well produced, narrative, imersive!

holy crap, i just watched this video after a semester of differential equations and numerical analysis and i think i appreciate this video way more than what i would've had i not taken those modules. everything you said i already knew (not saying it was a bad video). So actually seeing the differential eq of a pendulum and it's application was so awesome. i remember my lecturer in physics saying that our equation only works for small angles. nice video man

Other from .. uh chemistry with two variables LMAO

Great channel 3B1B big fan! Which software are you using to visualize all of those datas?

Best regards.

Your videos are spectacular.

What software do you use to make them, if I can ask?

how do you do this in manim

from active projects.one.part1.shared constructs import * ModuleNotFoundError: No module named 'active_projects'

This episode is GOLD

Can you make a video on physical significance of residue in complex integral?

Is it related to divergence and curl of vector field? If yes, how?

Bruh these hoes so difficult to understand you really gotta take Maths 3 in college and a Computer modelling class to understand em

This could be the greatest motion graphics video ever made

3B1B adds air resistance

Me studying physics without accounting for air resistance even once :

I am watching this pendulum example and wondering when will you actually use the word "phase space" for this imaginary two dimensional plane which contains all the possible initial conditions for position and velocity and fully defines the dynamics of the system. And everyone is used to them.

The answer is 18:26. Such a relief.

Grant's a freak of nature

Yeah… uh… I’ll stick with my high school physics formula sheet for now….

On computers one might think that simulations of physical systems like pendula should calculate sines and cosines for each frame of animation, but that is too slow to model complex systems, since calculating a sine requires several arithmetic operations to provide sufficient precision.

There is an interesting mathematical area devoted to efficient yet accurate calculation of iterative approximate integrations. Basically, with sufficient precision it is possible to do an accurate integration step with one addition (after all, integration is just addition of very tiny function slices with the slice size approaching zero). The result is that high-speed animations of systems requiring many separate integrations of various orders are not difficult to program.

Some of my first professional software, in 1966, supported the rotation in displayed realtime 3D stereo pairs of experimental data plots on a simple computer (the LINC) with a very tiny memory that had no way to compute sines or cosines. I used high-precision addition and subtration, along with a table of 90 sine values to convert from degrees to a more natural internal angle representation.

Your visualizations are absolutely amazing!

I think that at minute 6:24 there is an error in the formula for 0(t) (the angle), L/g should be inverted.

LOVE IS MATHEMATICALLY FREAKING HARD TO OBTAIN.

While thinking about the phase space that describes how the "two lovers" situation should evolve I noticed something. The origin of the graph to which 3b1b refers to as a "situation of mutual ambivalence" is a actually a situation were both the lovers don't love each other any more as both the variables (❤️1 and ❤️2 ) are 0. I think this tells a lot about long term relationships. Sorry for the deliberately expressed pessimism, 🙂 . 22:16

10:46 any one here knows. When to just skip the solution part? I know mathematicians do it when it gets hard, but… when does it gets complicated?

Some of my professors need tow watch your videos.

Hey,I wasn’t able to understand what he actual did in the ‘python programming’ .

I will be grateful if anyone can explain it to me a little bit .

ps : AWESOME VIDEO. AMAZING VISUALS!!

đoạn về tình yêu này không dịch 🙂

oh, stable spiral .. wait what??

I feel like there has to be some guidance around picking a step size (e.g. delta-t) for the numerical solution. He's already hinted about the Fourier series and we do have the Nyquist sampling theorem that sets a minimum sampling frequency for your desired resolution but I haven't quite put those together yet. It also occurs to me that in PDE's, the step sizes for each of your inputs can be different.

6:48

Nah, fam – just a

C H O N K U L A Rsine wave.LOL! As for chemistry

I've been scared of differential equations in college. After watching your video and the way you've made the connections between models and ways to represent and understand them, I felt my eyes water a little bit with joy. Now I am super interested in this particular field of Math. Thanks for the inspiration and beautiful way to describe such complex and intimidating concepts.

great video. Annoying music. Please consider re-uploading the videos without the music for those who find the music distracting / have hearing issues / sensory issues / ADHD etc.

The collision of two of the three bodies at 26:53 is oddly satisfying after having watched them dance around each other many times.

4:08 literally jaw dropping

I used to learn this formula by heart before every exam, treating it like a black box and it just.. arises completely naturally from what I knew all along

Python colour scheme please

Whoa I loved this video!!! I had a question: I was thinking about the function -g/L * sin (theta(t)),it's integral could be:

cos (theta (t)), where theta(t) has a derivative of -g/L (by the chain rule). So theta(t) must be -g/L * t. Where did I go wrong in this calculation?

Amazing!

Using Python instead of Julia is a little sad 🙁

After Veritasium's video on the butterfly effect, I had to come back and rewatch this whole video

3blue1brown has really played a great role in my education, and especially motivation. Really nice channel. Short, concise explanations thanks a lot.. go ahead…

30 minutes of searches = 9 minutes of videos with a rounding error for college for 1 hour not going = 4 minutes of phone focusing on mind fields.

My mind was blown at 16:00, the visualisation is so great!!

French !!! 😭😭😭

I just finished a Dynamical Systems and Chaos course with Strogatz's book. Beautiful topic.

I only watched to 5:29 then got hungry, but I relate strongly to this video. The content is very accessible to me.

Your “love” analog is total bullish!t. Or is that your 19th dimension? You’re in the realm of metaphysics.

Great videos!! How did you make them? I would like to see the behind the scenes preparation for the animations!

It is incredible! Differential Equations rule the universe

How can I use your codes to solve other Dynamical systems, say like foxes and rabbits problem? And plot the phase space! Thanks

I spent 4 years to get my damn bachelor diploma in Electrical Engineering and this video was devastating to me because it showed me how poorly these methods were explained at any class where we used them. But they always say the students will be great if the teacher is amazing. Luckily we have youtube and your channel. Amen!

This is really freaking interesting but I have an exam tomorrow and I've just started studying and hearing the God of maths say that differential equations are "really freaking hard to solve" just made me piss my pants

Hi Grant (sorry for the friendly treatment). I am an engineering student. Though I have a lot to learn, I am truly inspired and motivated by your videos. I would like to be a Patreon and contribute, you're the man.

Newton would like.

Are you sure the perpendicular force towards x axis is sinx. Because as we move in x direction the force is zero sin(0). =0

Pls reply it

Beyond phisics… What is beyond phisics…???😂😂😂

At 16:09 my jaw just hit the floor

Holy sht those are the kinematic equations 4:05

why was the result of the love example mutual ambivalence? isn't it a spiral sink, which is stable?

glad I watched

Did you leave out one of the "legs" of the right pi in the love example to imply it is female…?

B E A U T I F U L

py and numpy

An entire series of Probability and permutation, combination please please.

Hit like if you want

Hi Grant, I studied the damped driven pendulum for my MSc investigation 1986-87. It is the simplest system showing all forms of chaos, because it has a 3-dimensional phase space, the phase of the sinusoidal driving force being the third dimension. It is topologically easy to see that a two dimensional phase space does not allow chaos, because the phase trajectory must escape intersecting itself and therefore can only spiral in, eventually, when it has a damping term. The damped driven pendulum has an exponentially contracting phase flow, but it settles on a strange attractor that has it moving in a never repeating but also never stopping bounded motion: a great definition of chaos. I had quite the epiphany when I realized at some point back then that this classical chaotic behavior forever breaks determinism, opening the door for free will…

Jesus Christ, I'm not falling in love again

Спасибо, за эти видео. После просмотра, жизнь снова становится интересной. За музыку отдельная благодарность композитору)))

Chemistry huh

Who is disliking these videos???

This video has steins;gate written all over it. El Psy Congroo

This is the greatest video on this website.

Understood all and everything except why x=L*theta

Hypothetical Scenario: What if you were out in space, and you swung that pendulum. I imagine G is no longer part of the equation. I imagine the equation to look very different. How do you measure decay then ?

I am studying Mechanical Engineering and this makes me want to switch my major…

What happened to the population growth videos?

Can we implement it to stock market ?

Your”Love” lesson is self absorbed bullish!t. The rest is good stuff.

22:11 'wedding bells'? Their both slowly loving eachother less and less…

@14:38 You made your explanation confuse by this mistake: You interchanged the colors of the angular acceleration and velocity.

Why no mathematician nor Physicist will ever mention fractal progression of models and equations; I dare to say: there is no chaos, there is a fractal Reality and our small minds

I'm confused: at 6:16 there is this graph depicting angle over time and the graph shown is basically a cosine. but the related function is the cosine taking in a squareroot of a fraction. so, shouldn't the output graph show a distortet cosine, that get's stretched over time?

Would it be possible to plot a phase space describing relationship between error in initial measurements and the "distance" between predicted state of 3 body system and the actual state. Maybe there are some attraction points there.

Dif equations separate engineer from mathematician.

I stopped watching the video when he said let's talk about love

My heart is basically a dry desert now 🙁